Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genet Mol Biol ; 47(1): e20230110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488523

RESUMO

Butyrate is a promising candidate for an antitumoral drug, as it promotes cancer cell apoptosis and reduces hormone receptor activity, while promoting differentiation and proliferation in normal cells. However, the effects of low-dose butyrate on breast cancer cell cultures are unclear. We explored the impact of sub-therapeutic doses of butyrate on estrogen receptor alpha (ERα) transcriptional activity in MCF-7 cells, using RT-qPCR, Western blot, wound-healing assays, and chromatin immunoprecipitation. Our results showed that sub-therapeutic doses of sodium butyrate (0.1 - 0.2 mM) increased the transcription of ESR1, TFF1, and CSTD genes, but did not affect ERα protein levels. Moreover, we observed an increase in cell migration in wound-healing assays. ChIP assays revealed that treatment with 0.1 mM of sodium butyrate resulted in estrogen-independent recruitment of ERα at the pS2 promoter and loss of NCoR. Appropriate therapeutic dosage of butyrate is essential to avoid potential adverse effects on patients' health, especially in the case of estrogen receptor-positive breast tumors. Sub-therapeutic doses of butyrate may induce undesirable cell processes, such as migration due to low-dose butyrate-mediated ERα activation. These findings shed light on the complex effects of butyrate in breast cancer and provide insights for research in the development of antitumoral drugs.

2.
Environ Geochem Health ; 46(3): 87, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367090

RESUMO

The ecotoxic effect of Zn species arising from the weathering of the marmatite-like sphalerite ((Fe, Zn)S) in Allium cepa systems was herein evaluated in calcareous soils and connected with its sulfide oxidation mechanism to determine the chemical speciation responsible of this outcome. Mineralogical analyses (X-ray diffraction patterns, Raman spectroscopy, scanning electron microscopy and atomic force microscopy), chemical study of leachates (total Fe, Zn, Cd, oxidation-reduction potential, pH, sulfates and total alkalinity) and electrochemical assessments (chronoamperometry, chronopotentiometry, cyclic voltammetry, and electrochemical impedance spectroscopy) were carried out using (Fe, Zn)S samples to elucidate interfacial mechanisms simulating calcareous soil conditions. Results indicate the formation of polysulfides (Sn2-), elemental sulfur (S0), siderite (FeCO3)-like, hematite (Fe2O3)-like with sorbed CO32- species, gunningite (ZnSO4·H2O)-like phase and smithsonite (ZnCO3)-like compounds in altered surface under calcareous conditions. However, the generation of gunningite (ZnSO4·H2O)-like phase was predominant bulk-solution system. Quantification of damage rates ranges from 75 to 90% of bulb cells under non-carbonated conditions after 15-30 days, while 50-75% of damage level is determined under neutral-alkaline carbonated conditions. Damage ratios are 70.08 and 30.26 at the highest level, respectively. These findings revealed lower ecotoxic damage due to ZnCO3-like precipitation, indicating the effect of carbonates on Zn compounds during vegetable up-taking (exposure). Other environmental suggestions of the (Fe, Zn)S weathering and ecotoxic effects under calcareous soil conditions are discussed.


Assuntos
Cebolas , Poluentes do Solo , Compostos de Zinco , Solo/química , Sulfetos/química , Tempo (Meteorologia) , Poluentes do Solo/análise
3.
Pathogens ; 11(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215174

RESUMO

Sporothrix schenckii modulates the expression of its cell wall proteins (CWPs) in response to reactive oxygen species (ROS) generated by the phagocytic cells of the human host, which allows it to evade and escape the immune system. In this study, we performed a comparative proteomic analysis of the CW of S. schenckii after exposure and nonexposure to H2O2. Several CWPs involved in CW remodeling and fungal pathogenesis that modulated their expression in response to this oxidizing agent were identified, as were a number of antioxidant enzymes and atypical CWPs, called moonlighting proteins, such as the Hsp70-5, lipase 1 (Lip1), enolase (Eno), and pyruvate kinase (Pk). Moreover, RT-qPCR assays demonstrated that the transcription of genes HSP70-5, LIP1, ENO, and PK is regulated in response to the oxidant. The results indicated that S. schenckii differentially expressed CWPs to confer protection against ROS upon this fungus. Furthermore, among these proteins, antioxidant enzymes and interestingly, moonlighting-like CWPs play a role in protecting the fungus from oxidative stress (OS), allowing it to infect human host cells.

4.
Microb Pathog ; 161(Pt B): 105270, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34793878

RESUMO

Sporothrix schenckii is a dimorphic fungus, pathogenic to humans and animals, which is usually infective in the yeast form. Reactive oxygen species (ROS) play an important role in the host's defense, damaging the pathogen's DNA, proteins, and lipids. To prevent oxidative damage, the ROS are detoxified by pathogen-derived antioxidant enzymes such as catalases (CATs). In this work, we analyzed the activity and expression level of three S. schenckii genes, designated as CAT1, CAT2, and CAT3, that putatively encoded for three isoforms of monofunctional CAT with a predicted molecular weight of 57.6, 56.2, and 81.4 kDa, respectively. Our results demonstrate that oxidative stress induced by exogenous H2O2 leads to an altered lipid peroxidation, modifying CAT activity and the expression levels of the CAT genes, being CAT1 and CAT3 the genes with the highest expression in response to the oxidizing agent. These results show that CAT isoforms in S. schenckii can be regulated in response to oxidative stress and might help to control ROS homeostasis in the fungus-host interaction.


Assuntos
Sporothrix , Esporotricose , Animais , Catalase/genética , Catalase/metabolismo , Peróxido de Hidrogênio , Estresse Oxidativo , Sporothrix/genética , Esporotricose/veterinária
5.
Pathogens ; 10(7)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34358055

RESUMO

The role of immune cells associated with sporotrichosis caused by Sporothrix schenckii is not yet fully clarified. Macrophages through pattern recognition receptors (PRRs) can recognize pathogen-associated molecular patterns (PAMPs) of Sporothrix, engulf it, activate respiratory burst, and secrete pro-inflammatory or anti-inflammatory biological mediators to control infection. It is important to consider that the characteristics associated with S. schenckii and/or the host may influence macrophage polarization (M1/M2), cell recruitment, and the type of immune response (1, 2, and 17). Currently, with the use of new monocyte-macrophage cell lines, it is possible to evaluate different host-pathogen interaction processes, which allows for the proposal of new mechanisms in human sporotrichosis. Therefore, in order to contribute to the understanding of these host-pathogen interactions, the aim of this review is to summarize and discuss the immune responses induced by macrophage-S. schenckii interactions, as well as the PRRs and PAMPs involved during the recognition of S. schenckii that favor the immune evasion by the fungus.

6.
Braz J Microbiol ; 52(1): 49-62, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33125684

RESUMO

Sporotrichosis is an endemic mycosis caused by the species of the Sporothrix genus, and it is considered one of the most frequent subcutaneous mycoses in Mexico. This mycosis has become a relevant fungal infection in the last two decades. Today, much is known of its epidemiology and distribution, and its taxonomy has undergone revisions. New clinical species have been identified and classified through molecular tools, and they now include Sporothrix schenckii sensu stricto, Sporothrix brasiliensis, Sporothrix globosa, and Sporothrix luriei. In this article, we present a systematic review of sporotrichosis in Mexico that analyzes its epidemiology, geographic distribution, and diagnosis. The results show that the most common clinical presentation of sporotrichosis in Mexico is the lymphocutaneous form, with a higher incidence in the 0-15 age range, mainly in males, and for which trauma with plants is the most frequent source of infection. In Mexico, the laboratory diagnosis of sporotrichosis is mainly carried out using conventional methods, but in recent years, several researchers have used molecular methods to identify the Sporothrix species. The treatment of choice depends mainly on the clinical form of the disease, the host's immunological status, and the species of Sporothrix involved. Despite the significance of this mycosis in Mexico, public information about sporotrichosis is scarce, and it is not considered reportable according to Mexico's epidemiological national system, the "Sistema Nacional de Vigilancia Epidemiológica." Due to the lack of data in Mexico regarding the epidemiology of this disease, we present a systematic review of sporotrichosis in Mexico, between 1914 and 2019, that analyzes its epidemiology, geographic distribution, and diagnosis.


Assuntos
Sporothrix/isolamento & purificação , Esporotricose/epidemiologia , Esporotricose/microbiologia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , México/epidemiologia , Pessoa de Meia-Idade , Sporothrix/classificação , Sporothrix/genética , Esporotricose/diagnóstico , Adulto Jovem
7.
Environ Sci Pollut Res Int ; 27(34): 43223-43232, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32734539

RESUMO

The objective of this study was to identify and evaluate the impact of exposure to mixtures of organochloride pesticides (OCPs) in agricultural workers by detecting their effects on the activity of the enzyme glutathione S-transferase (GST) and the presence of polymorphisms of the GSTT1 and GSTM1 genes. The presence of OCPs was identified and quantified by gas chromatography, while spectrophotometry was used to measure enzymatic GST activity. The frequencies of the GSTM1 genotypes were analyzed by multiplex PCR. A total of 18 metabolites of OCPs were identified in the workers' blood, most of which are either prohibited (DDT and its metabolites p, p'DDD and p, p'DDE, dieldrin, endrin, aldrin) and/or restricted (δ hexachlorocyclohexane, cis chlordane, methoxychlor, and endosulfan). The results obtained indicate lower levels of GST activity at higher OCPs concentrations detected in blood from exposed workers, together with an increase in OCP levels in individuals who presented the GSTT1*0 and GSTM1*0 genotypes. These conditions place the detoxification process in agricultural workers with null polymorphisms in the GST genes and high concentrations of OCPs in the blood (especially DDT and its metabolites, DDD and DDE) at risk, and increase their susceptibility to develop serious diseases.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Genótipo , Glutationa Transferase/genética , Humanos , Hidrocarbonetos Clorados/análise , México , Praguicidas/análise , Polimorfismo Genético
8.
Biomolecules ; 10(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392767

RESUMO

An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.


Assuntos
Canalopatias/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Deficiências na Proteostase/metabolismo , Animais , Canalopatias/tratamento farmacológico , Canalopatias/genética , Humanos , Proteínas de Membrana/química , Transporte Proteico , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/genética
9.
Microb Pathog ; 141: 103987, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31962184

RESUMO

Sporotrichosis is an emergent subcutaneous mycosis that is a threat to both humans and other animals. Sporotrichosis is acquired by the traumatic implantation of species of the Sporothrix genus. Added to the detoxification systems, pathogenic fungi possess different mechanisms that allow them to survive within the phagocytic cells of their human host during the oxidative burst. These mechanisms greatly depend from the cell wall (CW) since phagocytic cells recognize pathogens through specific receptors associated to the structure. To date, there are no studies addressing the modulation of the expression of S. schenckii CW proteins (CWP) in response to reactive oxygen species (ROS). Therefore, in this work, a proteomic analysis of the CW of S. schenckii in response to the oxidative agent menadione (O2•-) was performed. Proteins that modulate their expression were identified which can be related to the fungal survival mechanisms within the phagocyte. Among the up-regulated CWP in response to the oxidative agent, 13 proteins that could be involved in the mechanisms of oxidative stress response in S. schenckii were identified. The proteins identified were thioredoxin1 (Trx1), superoxide dismutase (Sod), GPI-anchored cell wall protein, ß-1,3-endoglucanase EglC, glycoside hydrolase (Gh), chitinase, CFEM domain protein, glycosidase crf1, covalently-linked cell wall protein (Ccw), 30 kDa heat shock protein (Hsp30), lipase, trehalase (Treh), fructose-bisphosphate aldolase (Fba1) and citrate synthase (Cs). The identification of CWP that modulates their expression in response to superoxide ion (O2•-) in S. schenckii is a useful approach to understand how the fungus defends itself against ROS, in order to evade the phagocytic cells from the host and cause the infection.


Assuntos
Parede Celular/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sporothrix , Vitamina K 3/farmacologia , Animais , Parede Celular/química , Doenças Transmissíveis Emergentes/imunologia , Doenças Transmissíveis Emergentes/microbiologia , Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genoma Fúngico , Evasão da Resposta Imune , Oxidantes/farmacologia , Estresse Oxidativo/fisiologia , Fagócitos/imunologia , Fagócitos/microbiologia , Proteômica , Sporothrix/efeitos dos fármacos , Sporothrix/genética , Sporothrix/metabolismo , Esporotricose/imunologia
10.
Rev. iberoam. micol ; 36(1): 17-23, ene.-mar. 2019. tab, ilus, graf
Artigo em Inglês | IBECS | ID: ibc-185488

RESUMO

Background: Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. In order to colonize the host, the pathogen must neutralize the reactive oxygen species produced by the phagocytic cells during the respiratory burst. Little is known about these mechanisms in S. schenckii. Aims: To identify the proteins differentially expressed after the exposure of S. schenckiisensu stricto to different concentrations of H2O2. Methods: Yeast cells of S. schenckiisensu stricto were exposed to increasing concentrations of H2O2. Proteins differentially expressed in response to oxidative stress were analyzed using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and identified by MALDI-MS/MS. RT-PCR assays were performed to evaluate the transcription of genes of the identified proteins. Results: Concentrations of H2O2 as high as 800 mM allowed cell growth, and 200 mM and 400mM were selected for comparative analysis by 2D-PAGE. This analysis revealed at least five differentially expressed proteins, which were identified as heat shock 70 kDa protein (Hsp70), chaperonin GroEL, elongation factor 1-β (EF1-β), a hypothetical protein, and mitochondrial peroxiredoxin (Prx1). RT-PCR revealed that the transcription of the genes coding for some of these proteins are differentially regulated. Conclusions: Based on these results, it is proposed that these proteins may be involved in the resistance of S. schenckii to oxidative stress, and play an important role in the fungus survival in the host


Antecedentes: La esporotricosis es una infección fúngica causada por el complejo Sporothrix schenckii. Para colonizar al huésped, los patógenos deben neutralizar las especies reactivas de oxígeno producidas por las células fagocíticas durante el estallido respiratorio. Poco se conoce sobre este mecanismo en S. schenckii. Objetivos: Identificar proteínas diferencialmente expresadas durante la exposición de S. schenckiisensu stricto a diferentes concentraciones de H2O2. Métodos: Levaduras de S. schenckiisensu stricto fueron expuestas a concentraciones crecientes de H2O2. Las proteínas diferencialmente expresadas en respuesta el estrés oxidativo fueron analizadas mediante electroforesis en geles de poliacrilamida en doble dimensión (2D-PAGE) e identificadas por MALDI-MS/MS. Se realizaron ensayos de RT-PCR para evaluar la transcripción de genes de las proteínas identificadas. Resultados: Concentraciones altas de H2O2 (800 mM) permitieron el crecimiento celular, y se seleccionaron las concentraciones de 200 y 400 mM para el análisis comparativo mediante 2D-PAGE. Este análisis reveló al menos cinco proteínas diferencialmente expresadas, identificadas como proteína de choque térmico de 70 kDa (Hsp70), chaperonina GroEL, factor de alargamiento 1-β (EF1-β), una proteína hipotética y peroxirredoxina mitocondrial (Prx1). La RT-PCR reveló que la transcripción de los genes que codifican para algunas de estas proteínas se regula diferencialmente. Conclusiones: Con estos resultados pensamos que estas proteínas podrían estar involucradas en la resistencia de S. schenckiisensu stricto al estrés oxidativo y jugar un papel importante en la supervivencia del hongo en el huésped


Assuntos
Anti-Infecciosos Locais/farmacologia , Proteínas Fúngicas/análise , Proteínas Fúngicas/biossíntese , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sporothrix/efeitos dos fármacos , Sporothrix/metabolismo , Anti-Infecciosos Locais/administração & dosagem , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/administração & dosagem
11.
Rev Iberoam Micol ; 36(1): 17-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30799196

RESUMO

BACKGROUND: Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. In order to colonize the host, the pathogen must neutralize the reactive oxygen species produced by the phagocytic cells during the respiratory burst. Little is known about these mechanisms in S. schenckii. AIMS: To identify the proteins differentially expressed after the exposure of S. schenckiisensu stricto to different concentrations of H2O2. METHODS: Yeast cells of S. schenckiisensu stricto were exposed to increasing concentrations of H2O2. Proteins differentially expressed in response to oxidative stress were analyzed using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and identified by MALDI-MS/MS. RT-PCR assays were performed to evaluate the transcription of genes of the identified proteins. RESULTS: Concentrations of H2O2 as high as 800mM allowed cell growth, and 200mM and 400mM were selected for comparative analysis by 2D-PAGE. This analysis revealed at least five differentially expressed proteins, which were identified as heat shock 70kDa protein (Hsp70), chaperonin GroEL, elongation factor 1-ß (EF1-ß), a hypothetical protein, and mitochondrial peroxiredoxin (Prx1). RT-PCR revealed that the transcription of the genes coding for some of these proteins are differentially regulated. CONCLUSIONS: Based on these results, it is proposed that these proteins may be involved in the resistance of S. schenckii to oxidative stress, and play an important role in the fungus survival in the host.


Assuntos
Anti-Infecciosos Locais/farmacologia , Proteínas Fúngicas/análise , Proteínas Fúngicas/biossíntese , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Sporothrix/efeitos dos fármacos , Sporothrix/metabolismo , Anti-Infecciosos Locais/administração & dosagem , Relação Dose-Resposta a Droga , Peróxido de Hidrogênio/administração & dosagem
12.
Microb Pathog ; 129: 56-63, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30710673

RESUMO

Histopathological studies of human sporotrichosis lesions show pyogenic and granulomatous processes in which polymorphonuclear neutrophils (PMNs) play a central role. Few studies regarding the events associated with the interaction of human PMNs with Sporothrix schenckii have been made despite their importance in the clinical manifestations of the disease. In this study, human PMNs were co-cultured with conidia or yeast cells of S. schenckii to compare the phagocytic activity and morphological changes that could provide a clearer insight into the role of these phagocytes in the initial phase of sporotrichosis. PMNs showed increased cell size and separation of the nuclear lobes after phagocytosis. Through Scanning Electron Microscopy (SEM) analysis, an increase in cells with flattened filaments and vesicles on their surface was observed. Phagocytosed conidia showed a significant increase in width and size. The phagocytic activity was greater against yeasts than with conidia, but the viability of both S. schenckii cellular morphotypes was not drastically affected even after 2 h of co-culture. In conclusion, morphological changes in PMNs suggest that S. schenckii induces processes that may favor proinflammatory events. These phagocytes show a high ability to bind or ingest S. schenckii cells without affecting their viability. Morphological changes recorded in ingested conidia, suggest that this fungus could make the dimorphic switching in PMNs.


Assuntos
Neutrófilos/citologia , Neutrófilos/microbiologia , Fagocitose , Sporothrix/imunologia , Tamanho Celular , Células Cultivadas , Técnicas de Cocultura , Voluntários Saudáveis , Humanos , Microscopia Eletrônica de Varredura , Neutrófilos/imunologia , Sporothrix/crescimento & desenvolvimento
13.
Microb Biotechnol ; 12(6): 1164-1179, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30618130

RESUMO

The aim of the present work was to evaluate whether Candida species can reduce both precious and toxic pure metals from the respective molecular ions. From these results, the nanoparticles formed were studied using scanning electron microscopy with energy-dispersive spectroscopy, Raman spectroscopy, X-ray fluorescence spectroscopy and synchrotron radiation. Our results showed that the metal ions were reduced to their corresponding metallic nanoconglomerate or nanoparticles by Candida species. This is the first report on how yeasts of this genus are capable of achieving homeostasis (resilience) in the presence of metal ions of both precious and toxic metals by reducing them to a metallic state.


Assuntos
Candida/metabolismo , Metais Pesados/metabolismo , Estresse Oxidativo , Biotransformação , Microscopia Eletrônica de Varredura , Nanopartículas/metabolismo , Oxirredução , Análise Espectral
14.
Microb Pathog ; 124: 21-29, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30118801

RESUMO

In recent years, C. albicans and C. glabrata have been identified as the main cause of candidemia and invasive candidiasis in hospitalized and immunocompromised patients. In order to colonize the human host, these fungi express several virulence factors such as the response to oxidative stress and the formation of biofilms. In the expression of these virulence factors, the cell wall of C. albicans and C. glabrata is of fundamental importance. As the outermost structure of the yeast, the cell wall is the first to come in contact with the reactive oxygen species (ROS) generated during the respiratory outbreak, and in the formation of biofilms, it is the first to adhere to organs or medical devices implanted in the human host. In both processes, several cell wall proteins (CWP) are required, since they promote attachment to human cells or abiotic surfaces, as well as to detoxify ROS. In our working group we have identified moonlighting CWP in response to oxidative stress as well as in the formation of biofilms. Having identified moonlighting CWP in Candida species in response to two virulence factors indicates that these proteins may possibly be immunodominant. The aim of the present work was to evaluate whether proteins of this type such as fructose-bisphosphate aldolase (Fba1), phosphoglycerate kinase (Pgk) and pyruvate kinase (Pk), could confer protection in a mouse model against C. albicans and C. glabrata. For this, recombinant proteins His6-Fba1, His6-Pgk and His6-Pk were constructed and used to immunize several groups of mice. The immunized mice were infected with C. albicans or C. glabrata, and subsequently the liver, spleen and kidney were extracted and the number of CFU was determined. Our results showed that Pk confers immunity to mice against C. albicans, while Fba1 to C. glabrata. This data allows us to conclude that the moonlighting CWP, Fba1 and Pk confer in vivo protection in a specific way against each species of Candida. This makes them promising candidates for developing specific vaccines against these pathogens.


Assuntos
Candidíase/prevenção & controle , Frutose-Bifosfato Aldolase/imunologia , Proteínas Fúngicas/imunologia , Vacinas Fúngicas/imunologia , Fosfoglicerato Quinase/imunologia , Piruvato Quinase/imunologia , Animais , Candida albicans/imunologia , Candida glabrata/imunologia , Candidíase/imunologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Frutose-Bifosfato Aldolase/administração & dosagem , Proteínas Fúngicas/administração & dosagem , Vacinas Fúngicas/administração & dosagem , Rim/microbiologia , Fígado/microbiologia , Camundongos , Fosfoglicerato Quinase/administração & dosagem , Piruvato Quinase/administração & dosagem , Baço/microbiologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
15.
J Ind Microbiol Biotechnol ; 45(8): 669-680, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858724

RESUMO

Chemical and surface analyses are carried out using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM-EDS), atomic force microscopy (AFM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS) and extracellular surface protein quantification to thoroughly investigate the effect of supplementary As(V) during biooxidation of arsenopyrite by Acidithiobacillus thiooxidans. It is revealed that arsenic can enhance bacterial reactions during bioleaching, which can strongly influence its mobility. Biofilms occur as compact-flattened microcolonies, being progressively covered by a significant amount of secondary compounds (S n2- , S0, pyrite-like). Biooxidation mechanism is modified in the presence of supplementary As(V), as indicated by spectroscopic and microscopic studies. GDS confirms significant variations between abiotic control and biooxidized arsenopyrite in terms of surface reactivity and amount of secondary compounds with and without As(V) (i.e. 6 µm depth). CLSM and protein analyses indicate a rapid modification in biofilm from hydrophilic to hydrophobic character (i.e. 1-12 h), in spite of the decrease in extracellular surface proteins in the presence of supplementary As(V) (i.e. stressed biofilms).


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Arsenicais/química , Biofilmes , Compostos de Ferro/química , Ferro/química , Minerais/química , Sulfetos/química , Arsênio/química , Interações Hidrofóbicas e Hidrofílicas , Microbiologia Industrial , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxigênio/química , Espectrofotometria , Análise Espectral Raman , Propriedades de Superfície
16.
Environ Sci Pollut Res Int ; 24(24): 20082-20092, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28702905

RESUMO

Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS2)-like, S n2-/S0, and As2S3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.


Assuntos
Acidithiobacillus thiooxidans/efeitos dos fármacos , Arsenicais/metabolismo , Biofilmes/efeitos dos fármacos , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Acidithiobacillus thiooxidans/crescimento & desenvolvimento , Biodegradação Ambiental , Biofilmes/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Compostos de Ferro/toxicidade , Microscopia Confocal , Microscopia Eletrônica de Varredura , Minerais/toxicidade , Oxirredução , Análise Espectral Raman , Sulfetos/toxicidade , Poluentes Químicos da Água/toxicidade
17.
Int J Biomed Sci ; 12(2): 53-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27493590

RESUMO

T cells are components of adaptive immunity and are involved in the resolution of respiratory infections, which are a major cause of morbidity and mortality in young children worldwide. Activation and differentiation of T cells is given mostly by the cytokine IL-2. This study aimed to determine the phenotype of T cells and IL-2 expression in children suffering from upper respiratory tract infection with Streptococcus pyogenes (S. pyogenes). For this purpose, IL-2 expression at its gene and protein levels and quantitation of CD4(+) and CD8(+) T lymphocytes were assessed in children aged 0-5 years old suffering from upper respiratory tract infection with S. pyogenes and healthy children of the same age. Children with S. pyogenes infection had a higher expression of IL-2 gene and a lower level of this cytokine expression at protein level than healthy children. The numbers of CD4(+) T lymphocytes were similar among the groups. In contrast, difference in the numbers of CD8(+) T lymphocytes among the groups was found. We conclude that infections by S. pyogenes in young children lead to an increased expression of IL-2 mRNA.

18.
Sci Total Environ ; 566-567: 1106-1119, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27312277

RESUMO

Bioleaching of arsenopyrite presents a great interest due to recovery of valuable metals and environmental issues. The current study aims to evaluate the arsenopyrite oxidation by Acidithiobacillus thiooxidans during 240h at different time intervals, in the presence and absence of supplementary arsenic. Chemical and electrochemical characterizations are carried out using Raman, AFM, SEM-EDS, Cyclic Voltammetry, EIS, electrophoretic and adhesion forces to comprehensively assess the surface behavior and biooxidation mechanism of this mineral. These analyses evidence the formation of pyrite-like secondary phase on abiotic control surfaces, which contrast with the formation of pyrite (FeS2)-like, orpiment (As2S3)-like and elementary sulfur and polysulfide (Sn(2-)/S(0)) phases found on biooxidized surfaces. Voltammetric results indicate a significant alteration of arsenopyrite due to (bio)oxidation. Resistive processes determined with EIS are associated with chemical and electrochemical reactions mediated by (bio)oxidation, resulting in the transformation of arsenopyrite surface and biofilm direct attachment. Charge transfer resistance is increased when (bio)oxidation is performed in the presence of supplementary arsenic, in comparison with lowered abiotic control resistances obtained in its absence; reinforcing the idea that more stable surface products are generated when As(V) is in the system. Biofilm structure is mainly comprised of micro-colonies, progressively enclosed in secondary compounds. A more compact biofilm structure with enhanced formation of secondary compounds is identified in the presence of supplementary arsenic, whereby variable arsenopyrite reactivity is linked and attributed to these secondary compounds, including Sn(2-)/S(0), pyrite-like and orpiment-like phases.


Assuntos
Acidithiobacillus thiooxidans/fisiologia , Arsênio/química , Arsenicais/metabolismo , Biofilmes , Compostos de Ferro/metabolismo , Minerais/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Oxirredução , Fatores de Tempo
19.
J Immunol Res ; 2016: 6525831, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27051673

RESUMO

Cell wall (CW) components of fungus Sporothrix schenckii are the major inductors antigens of immune responses. The immunodominant 60 kDa glycoprotein (gp60) has been shown to be associated with the virulence of this fungus but its role in experimental sporotrichosis is unknown. In this work, the immunological effects of CW-purified gp60 were investigated in a model of experimental subcutaneous sporotrichosis in normal and gp60-preimmunized C57BL/6 and BALB/c mice strains which were then infected with S. schenckii conidia. Results showed that both mice strains use different cytokine profiles in order to fight S. schenckii infection; C57BL/6 mice seem to use a Th17 response while BALB/c mice tend to depend on a Th1 profile. Preimmunization with gp60 showed a downregulatory effect on the immune response since cytokines levels were diminished in both strains. There were no significant differences in the magnitude of dorsoplantar inflammation between gp60-preimmunized and nonimmunized mice of both strains. However, skin lesions due to the infection in gp60-preimmunized mice were more severe in BALB/c than in C57BL/6 mice, suggesting that the antigen exerts a higher downregulatory effect on the Th1 response.


Assuntos
Antígenos de Fungos/imunologia , Parede Celular/imunologia , Glicoproteínas/imunologia , Imunidade Celular/efeitos dos fármacos , Sporothrix/imunologia , Esporotricose/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Fungos/administração & dosagem , Antígenos de Fungos/química , Parede Celular/química , Citocinas/genética , Citocinas/imunologia , Expressão Gênica , Glicoproteínas/administração & dosagem , Glicoproteínas/química , Imunização , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Especificidade da Espécie , Esporos Fúngicos/química , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Sporothrix/química , Sporothrix/patogenicidade , Esporotricose/genética , Esporotricose/microbiologia , Células Th1/imunologia , Células Th1/microbiologia , Equilíbrio Th1-Th2 , Células Th17/imunologia , Células Th17/microbiologia
20.
Curr Microbiol ; 73(2): 292-300, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27117164

RESUMO

Sporotrichosis is a fungal disease caused by the Sporothrix schenckii complex that includes species such as S. brasiliensis, S. schenckii sensu stricto, S. globosa, S. luriei, S. mexicana, and S. pallida, which exhibit different potentially antigenic molecular components. The immune response of susceptible hosts to control infection and disease caused by these fungi has been little studied. Besides, the fungus-host interaction induces the activation of different types of immune response. This mini-review analyzes and discusses existing reports on the identification and functional characterization of molecules from species of the S. schenckii complex with clinical relevance, and the mechanisms that mediate the type and magnitude of the immune response in experimental models in vivo and in vitro. This knowledge is expected to contribute to the development of protective and therapeutic strategies against sporotrichosis and other mycoses.


Assuntos
Sporothrix/imunologia , Esporotricose/imunologia , Animais , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Humanos , Sporothrix/genética , Esporotricose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...